Qualifying Exam Presentation

Proposal I: <u>A Nonviral Gene Transfer Agent</u> Based on N-(carboxymethyl)-*trans*-4hydroxyl-L-proline

Sean O. Clancy Advisor: Aaron W. Harper 29 July 2002

Overview

- I. Background
 - A. Types of vectors
 - 1. Viral: retroviruses, adenoviruses, etc.
 - 2. Nonviral: liposomes, peptides, polymers, etc.
 - **B.** Gene Delivery Process
 - C. Gene Delivery Requirements
- II. N-(carboxymethyl)-trans-4-hydroxyl-L-proline based polymer
 - A. Reasoning
 - B. How it meets requirements
- III. Synthesis
 - A. Monomer synthesis
 - B. Polymer synthesis
- IV. Characterization and evaluation
 - A. NMR
 - B. Toxicity
 - C. Transfection efficiency

Types of Vectors

- Viral: retroviruses, adenoviruses, etc.
 - Must be de-evolved to be made safe.
 - Very expensive and sometimes dangerous.
 - Limits on size of DNA.
- Nonviral: liposomes, peptides, polymers, etc.
 - Toxicity.
 - Lack of targeting.
 - Ease of engineering.

Gene Delivery Process

- DNA protection outside and inside cells.
- Bypass or escape from endocytotic pathways.
- Efficient release of DNA .
- DNA delivery to most of the target cells.
- At best:
 - Efficient nuclear targeting.
 - High, persistent and adjustable therapeutic levels.

Gene Delivery Requirements

- Be minimally toxic.
- Efficiently transfect DNA.
 - Balance toxicity vs. transfection efficiency.
- Biodegradable ester linkages.
- Tertiary amine groups in interior.
- Primary amine groups on exterior.

N-(carboxymethyl)-*trans*-4-hydroxy-L-proline

- Reason for choice
 - 4-hydroxy-L-proline main component in collagen, which is nearly everywhere in the body of mammals.

4-hydroxy-L-proline

N-(carboxymethyl)-trans-4-hydroxy-L-proline

- How it will meet requirements
 - Biodegradable ester linkages.
 - Internal tertiary amine to act as buffer.

Monomer Synthesis

Chaouk, H.; Middleton, S.; Jackson, W. R.; Hearn, M. T. W.; *International Journal of Bio-Chromatography*; **1997**, 2 (3), 153.

End Group Synthesis

Polymer Synthesis

Polymer Synthesis

Characterization

- ¹H and ¹³C NMR
 - Determination of DB (degree of branching) by ¹³C
 NMR with aid of model compounds.

- $-DB = (N_d + N_t)/(N_d + N_t + N_{IC} + N_{IN})^*$
- SEC with polystyrene and PAMAM as standards

* Hawker, C. J.; Lee, R.; Frechet, J. M. J.; J. Am. Chem. Soc., 1991, 113, 4583.

Evaluation

- Toxicity
 - Measured using an MTT assay.
 - Pale yellow color of MTT (3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) turns to blue when cleaved by living cells.
- Transfection efficiency
 - Measure decrease or increase in target protein levels.
 - Include reporter gene in transfected DNA, such as green fluorescent protein (GFP).

Acknowledgements

- The Harper Group
 - Patrick J. Case
 - Jeremy C. Collette
 - Michael Julian
 - Cory G. Miller
 - Asanga B. Padmaperuma

- Committee Members
 - Robert Bau
 - Aaron W. Harper
 - G. K. Surya Prakash
 - William P. Weber
 - William H. Steier