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Energy Transfer

• For Förster energy transfer to occur, the emission spectrum of the donor must 
overlap the absorption spectrum of the acceptor.1

• Also known as resonance energy transfer, this process occurs when the donor and 
acceptor are coupled by a dipole-dipole interaction, rather than the emission from the 
donor molecule being absorbed by the acceptor molecule.2

1. T. Förster, Ann. Phys. (Leipzig) 2, 55, 1948. Translated by R. S. Knox.
2.  J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic / Plenum Publishers, New York, NY 
(1999).



Energy Donors

Structures of the polymers used.

Solution state (THF) photophysical properties of the polymers.
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P1 350 411 61.5 0.386 0.690 3.24 2.31
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Energy Donors - Syntheses
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Scheme 1: The synthetic route to PM_es and P1 (i.) Ethanol/ PTSA
refluxed 24hrs; (ii.) Pd(PPh3)4, 2M Na2CO3, Toluene, refluxed 72hrs).



Energy Acceptors
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Solution state (THF) photophysical 
properties of the acceptors.

Dye λ max ε (M-1cm-1)

Coumarin 102 376 21373

Coumarin 480D 376 17900

Coumarin 6H 381 23660

Coumarin 500 383 18480

Coumarin 152 388 19133

Coumarin 30 406 39573

Coumarin 153 413 14537

Coumarin 314 427 28687

Coumarin 7 431 29750

Coumarin 337 437 38903

Coumarin 6 442 48070

PtFTPP 389 212856

PtOEP 380 217999

Structures of the acceptors.



Sample Preparation

• A 25 w/v % solution of polystyrene in 2,2,2-trichloroethanol was made.

• In this solution, each of the polymers P1 and PM_es were dispersed in a 2.5 w/v % 
concentration.  

• The acceptors were each dispersed in a 2.5 w/v % concentration as well.  

• 1:1 Doping of donor to acceptor.

• The solutions were then spin cast onto quartz slides. 



Overlay of P1 Emission with Absorbances of the 
Acceptors
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• Overlap from high to low energy side of donor emission.

• Brunner’s work3 showed that overlap on low energy side led to greater 
energy transfer efficiences.

3. K. Brunner, J. A. E. H. van Haare, B. M. W. Langeveld-Voss, H. F. M. Schoo, J. W. Hofstraat, and A. van Dijken, J. Phys. Chem. 
B 106, 6834 (2002). 



Overlay of PM_es Emission with Absorbances of 
the Acceptors
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P1 – Coumarin Doped Systems
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• Not corrected for direct excitation of the acceptors.



PM_es – Coumarin Doped Systems
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Calculation of the Parameters

(1)

In Equation 1, ET is the energy transfer efficiency,  Fda is the fluorescence 
intensity of the donor in the presence of the acceptor, and Fd is the 
fluorescence intensity of the donor alone. 

(2)

PhotoChemCAD calculated the overlap integrals (J) with Equation 2, where:  
J is the spectral overlap; is fs(υ) the fluorescence intensity of the donor; 
εA(υ) is the molar absorption coefficient of the acceptor; and υ is the wave 
number of the donor emission spectrum and the acceptor absorbance 
spectrum. 
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Energy Transfer Parameters of Coumarin Systems

Dye Abs. Max. 
(nm)

P1 – E(-14)
J,cm6/mmol

PM_es – E(-14) 
J,cm6/mmol

P1 - ET PM_es – ET

Coumarin 6H 381 6.2 5.6 0.925 0.830

Coumarin 500 383 2.6 2.4 0.819 0.841

Coumarin 152 388 4.0 3.6 0.854 0.916

Coumarin 30 406 9.6 8.7 0.943 0.919

Coumarin 153 413 3.6 3.4 0.924 0.904

Coumarin 314 427 5.9 5.6 0.942 0.885

Coumarin 7 431 6.7 6.7 0.926 0.912

• Coumarin 500 and Coumarin 152 do not follow the trend of higher relative 
overlap integral leads to higher relative energy transfer efficiency.



P1 – Pt(II) Porphine Doped Systems
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• Same concentrations.
• High ET efficiencies.
• Low emission efficiencies.



PM_es – Pt(II) Porphine Doped Systems
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Metalloporphine System Parameters
Dye Abs. Max. (nm) P1 – E(-14)

J,cm6/mmol
PM_es – E(-14) 

J,cm6/mmol
P1 – ET PM_es – ET

PtFTPP 395 22 20 0.904 0.855

PtOEP 383 28 26 0.949 0.902

• Overlap integrals are much higher than those for the Coumarin systems, 
because of the higher extinction coefficients.

• Intensities of emission from metalloporphines are much less than Coumarins.
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Conclusions

• Energy transfer has been shown to occur from polyphenylenes as the energy 
donors to singlet energy accepting Coumarins and the triplet energy accepting 
metalloporphines.  

• By dispersing the donor polymers and acceptor dyes in polystyrene, aggregation 
was prevented.  

• Our studies did not follow Brunner’s observations mostly due to the fact that the 
polymers used in this study did not aggregate.  

• For the most part, the efficiencies of energy transfer did correlate with the 
overlap integrals of the doped systems.  

• The disparity noticed with Coumarin 500 and Coumarin 152 is undergoing 
further study. 
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